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Enantioselective olefin epoxidation using homologous amine
and iminium catalysts—a direct comparison
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Abstract—Homologous biphenyl and (diastereomeric) binaphthyl tertiary azepines and quaternary iminium salts were prepared
from (+)-(S,S)-LL-acetonamine. Both the amines and iminium ions behave as effective catalysts for the enantioselective epoxidation
of unfunctionalized olefins (ee up to 83%).
� 2006 Elsevier Ltd. All rights reserved.
Chiral non-racemic epoxides are not only useful precur-
sors for organic chemists, but also frequently met struc-
tures in natural products, often related to their
biological activities (Eq. 1).1 A number of efficient meth-
ods exist for their preparation from olefins and many of
them use transition metal catalysts such as the Katsuki–
Sharpless or Katsuki–Jacobsen protocols.2 In the recent
years, much effort has been devoted to the development
of organocatalyzed epoxidation conditions that afford
metal-free procedures; the catalysts being perhydrate,
dioxirane, oxaziridine, or oxoammonium moieties as
well as ammonium or oxaziridinium salts.3
0040-
doi:1

* Cor

N
O

O

Ph

X

(L)-[1i][X]
R2

H

R3

R1

NaHCO3, oxone
CH3CN / Water 10:1
0 ˚C (conditions A)

catalyst

or
NaHCO3, oxone

CH2Cl2 / Water 3:2
0 ˚C (conditions B)

R2

H

R3

R1
O

ð1Þ
N
O

O

Ph

N
O

O

Ph

X X

(Sa,L)-[3i][X](Ra,L)-[2i][X]
Oxaziridinium ions are interesting alternatives to the
commonly used dioxiranes.4 Such organic salts are effec-
tive oxygen transfer reagents towards nucleophilic sub-
strates and electron-rich unfunctionalized olefins in
particular. Moreover, the propensity of iminium ions
to react with Oxone� triple salt to generate the oxazirid-
inium species renders the development of catalytic
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processes possible.5 The first example of an enantioselec-
tive iminium catalyzed reaction was reported in 1993.6

Since this pioneering work, several successful enantiose-
lective variants of the reaction have been reported,7–9

among which are studies using biphenyl 1i10 and binaph-
thyl 2i and 3i iminium salts;11 these compounds were
derived from (+)-LL-acetonamine used as an exocyclic
chiral auxiliary (Fig. 1).12

In the case of 1i, the twisted [7]-membered ring is
conformationally labile and single enantiomers are read-
ily prepared (vide infra). Two different types of salts,
namely compounds [1i][BPh4] and [1i][TRISPHAT],
Figure 1. Selected non-racemic iminium salts and their absolute
configuration, X� being a lipophilic non-coordinating anion (BPh4

or TRISPHAT).

mailto:jerome.lacour@chiorg.unige.ch


N
O

O

Ph

N
O

O

Ph

(Ra,L)-2a (Sa,L)-3a

Figure 2. Tertiary amines 2a and 3a directly related to iminium cations
2i and 3i.
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5298 M.-H. Gonçalves et al. / Tetrahedron Letters 47 (2006) 5297–5301
have been utilized previously in epoxidation reactions—
no major differences being observed between the two ion
pairing systems.10,13 In the case of 2i and 3i, the presence
of the stereogenic configurationally rigid binaphthyl
core creates a diastereomeric relationship. Both salts
(�)-[2i][BPh4] and (+)-[3i][BPh4] of (Ra,LL) and (Sa,LL)
configuration, respectively, were prepared. An interest-
ing matched/mismatched behaviour was characterized;
salt [2i][BPh4] leading to quite higher conversions than
its diastereomer. On the whole, compound (�)-
[2i][BPh4] is one of the most effective iminium salt cata-
lysts to date (ee up to 95%).11

Whereas the epoxidation of olefins catalyzed by iminium
salts has been known for quite some time, the mediation
of the reaction by amines and/or ammonium salts is still
a new topic.14 It was only in 2000 that the catalyzed
enantioselective epoxidation of olefins by secondary
amines was reported (ee up to 66%), the involvement
of ammonium species in the key oxidation transfer step
only being described in 2003.15,16 Recently, various sec-
ondary amines were studied in this context and a bene-
ficial influence of electron-withdrawing atoms (such as
fluorine) at the b-position relative to the amino group
was demonstrated. In that report, the influence of the
reaction medium was also examined and different out-
puts resulted from the reactions that were performed
in slightly acidic conditions: type A: CH3CN/NaH-
CO3/H2O and type B: CH2Cl2/NaHCO3/18-crown-6/
H2O.17

So far, the most selective amine/ammonium catalysts
have been a-substituted pyrrolidine moieties for which
no stable iminium analogues can be found.18 As such,
it has been difficult to compare the catalytic activity
and selectivity of ammonium moieties with that of
related iminium species. It was therefore debatable as to
which of these two classes of related catalysts is the most
effective—if either. Herein, we report a study in which
tertiary amines 1a, 2a and 3a (Scheme 1 and Fig. 2), di-
rectly related to iminium cations 1i, 2i and 3i, have been
synthesized, and all these derivatives were tested as cat-
alysts for the enantioselective epoxidation of olefins.

As indicated above, iminium salt [1i][TRISPHAT] is an
effective catalyst for the asymmetric epoxidation of pro-
chiral alkenes. This compound can be prepared in three
steps from 2,2 0-bis(bromomethyl)biphenyl using
standard reactions (Scheme 1): (i) an alkylation with
(+)-LL-acetonamine to afford amine 1a (88%); (ii) a sub-
sequent elimination with N-bromosuccinimide to form
i)
N

O

O

Ph
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Scheme 1. Reagents and conditions: (i) (+)-LL-acetonamine (1.0 equiv),
CH3CN, reflux, 88%; (ii) NBS (1.1 equiv), CH2Cl2, 20 �C; (iii) [R3NH]-
[TRISPHAT] (1.2 equiv), chromatography (basic Al2O3, CH2Cl2),
60% (two steps).
the iminium salt; and (iii) an ion pair metathesis with
an ammonium TRISPHAT salt to afford the final prod-
uct (60%, two steps).19 With both compounds 1a and
[1i][TRISPHAT] available, there was thus a unique
opportunity to perform an amine/ammonium versus
iminium comparison—tertiary amines of type 1a being
undocumented prior to this study as catalysts in (enan-
tioselective) olefin epoxidation reactions.
Two different sets of epoxidation conditions (A and B,
vide supra) and three different prochiral trisubstituted
unfunctionalized alkenes (4–6) were selected for the
study. The results are reported in Table 1. Significantly,
both reagents 1a and [1i][TRISPHAT] behaved as effec-
tive catalysts under the two sets of experimental condi-
tions.20 Non-racemic epoxides of analogous absolute
configurations were isolated from the reactions with 1a
and [1i][TRISPHAT]. Whereas amine 1a performed bet-
ter in terms of conversions and enantiomeric excesses in
CH3CN/H2O (conditions A), iminium salt [1i][TRIS-
PHAT] gave better (overall) results in biphasic
CH2Cl2/H2O medium (conditions B). Enantiomeric
excesses up to 51% and 68% (alkene 5) were obtained
with 1a and [1i][TRISPHAT], respectively, the 51%
value being in fair comparison with that previously
obtained with secondary amine/ammonium salts.15,17

To extend the scope of the study, and potentially
increase the selectivity of the amine/ammonium cata-
lyzed reactions, compounds 2a and 3a were prepared
following the protocol detailed above (Scheme 1) with
(R)- and (S)-2,2 0-bis(bromomethyl)-1,1 0-binaphthyl as
substrates, respectively, these compounds being further
derived into the diastereomeric iminium salts [2i][TRIS-
PHAT] and [3i][TRISPHAT].

Olefins 4–6 were then treated under conditions A and B
with substoichiometric amounts (5 mol %) of 2a, 3a,
[2i][TRISPHAT] and [3i][TRISPHAT]. The results are
reported in Tables 2 and 3; all four derivatives behave
as catalysts. Careful analysis of the data reveals a num-
ber of subtleties, but some general trends can be found.

As far as solvent effects are concerned, CH3CN/H2O
conditions (A) were better overall than biphasic



Table 1. Enantioselective epoxidation of olefins 4–6 using 1a and [1i][TRISPHAT] as catalysts

Alkenec Amine 1a Iminium [1i][TRISPHAT]

Conditions Aa Conditions Bb Conditions Aa Conditions Bb

Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf.

4 90e,f 53 (�)-(S,S) 78d 26 (�)-(S,S) 75e,f 54 (�)-(S,S) 81d 54 (�)-(S,S)
5 50e,f 51 (+)-(1R,2S) 66d 23 (+)-(1R,2S) 36e,f 57 (+)-(1R,2S) 85d 68 (+)-(1R,2S)
6 97d 36 (�)-(S,S) 73d 21 (�)-(S,S) 95d 33 (�)-(S,S) 88d 36 (�)-(S,S)

a Conditions A: 5 mol % of catalyst, 2.0 equiv Oxone�, 5.0 equiv NaHCO3, CH3CN/H2O (10:1), 0 �C. Average of at least two runs.
b Conditions B: 5 mol % of catalyst, 2.5 mol % 18-C-6, 1.1 equiv Oxone�, 4.0 equiv NaHCO3, CH2Cl2/H2O (3:2), 0 �C. Average of at least two runs.
c The enantiomeric excesses were determined by CSP-GC (4, Chiraldex Hydrodex b-3P) or CSP-HPLC (5 and 6, Chiralcel OD-H); the conversions

using an internal standard (naphthalene).
d 2 h reaction time.
e 15 min reaction time.
f Complete conversion was observed in 2 h along with some product decomposition. Care was thus taken to select a shorter reaction time.

Table 2. Enantioselective epoxidation of olefins 4–6 using 2a and [2i][TRISPHAT] as catalysts

Alkenec Amine 2a Iminium [2i][TRISPHAT]

Conditions Aa Conditions Bb Conditions Aa Conditions Bb

Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf.

4 100e,f 78 (�)-(S,S) 90d 65 (�)-(S,S) 64e,f 79 (�)-(S,S) 99d 77 (�)-(S,S)
5 99e,f 80 (+)-(1R,2S) 87d 45 (+)-(1R,2S) 34e,f 71 (+)-(1R,2S) 90d 78 (+)-(1R,2S)
6 94d 48 (�)-(S,S) 58d 48 (�)-(S,S) 88d 47 (�)-(S,S) 80d 46 (�)-(S,S)

a Conditions A: 5 mol % of catalyst, 2.0 equiv Oxone�, 5.0 equiv NaHCO3, CH3CN/H2O (10:1), 0 �C. Average of at least two runs.
b Conditions B: 5 mol % of catalyst, 2.5 mol % 18-C-6, 1.1 eq Oxone�, 4.0 equiv NaHCO3, CH2Cl2/H2O (3:2), 0 �C. Average of at least two runs.
c The enantiomeric excesses were determined by CSP-GC (4, Chiraldex Hydrodex b-3P) or CSP-HPLC (5 and 6, Chiralcel OD-H); the conversions

using an internal standard (naphthalene).
d 2 h reaction time.
e 15 min reaction time.
f Complete conversion was observed in 2 h along with some product decomposition. Care was thus taken to select a shorter reaction time.

Table 3. Enantioselective epoxidation of olefins 4–6 using 3a and [3i][TRISPHAT] as catalysts

Alkenec Amine 3a Iminium [3i][TRISPHAT]

Conditions Aa Conditions Bb Conditions Aa Conditions Bb

Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf. Conv.
(%)

ee
(%)

Conf.

4 99 76 (+)-(R,R) 70 77 (+)-(R,R) 98 81 (+)-(R,R) 54 78 (+)-(R,R)
5 97 78 (�)-(1S,2R) <5 57 (�)-(1S,2R) 99 83 (�)-(1S,2R) 33 69 (�)-(1S,2R)
6 97 52 (+)-(R,R) 23 53 (+)-(R,R) 85 52 (+)-(R,R) 15 54 (+)-(R,R)

a Conditions A: 5 mol % of catalyst, 2.0 equiv Oxone�, 5.0 equiv NaHCO3, CH3CN/H2O (10:1), 0 �C, 2 h. Average of at least two runs.
b Conditions B: 5 mol % of catalyst, 2.5 mol % 18-C-6, 1.1 equiv Oxone�, 4.0 equiv NaHCO3, CH2Cl2/H2O (3:2) , 0 �C, 2 h. Average of at least two

runs.
c The enantiomeric excesses were determined by CSP-GC (4, Chiraldex Hydrodex b-3P) or CSP-HPLC (5 and 6, Chiralcel OD-H); the conversions

using an internal standard (naphthalene).
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CH2Cl2/H2O (B), better conversions occurred in the
more polar conditions. In several instances, the reac-
tions were complete in 15 min using conditions A,
whereas a time of 2 h was necessary with the haloge-
nated solvent mixture. This is true for all catalysts and
compound 2a in particular (e.g., olefin 4, A: 15 min,
100% versus B: 2 h, 90%). This trend also holds true
for the enantiomeric excesses, which were higher in the
more polar conditions (olefin 5, catalyst 2a, A: ee 80%
versus B: ee 45%).21

If one now compares the selectivity of the diastereomeric
catalysts together—that is 2a with 3a, and 2i with 3i—
one generally observes analogous levels of stereoinduc-
tion in the (Ra,LL) and (Sa,LL) series, the only major
difference being reversal of the sense of induction for
the non-racemic epoxides. It indicates that the binaph-
thyl framework is a more effective chiral auxiliary than
LL-acetonamine, since the configuration of the epoxides
changes with the inversion of the absolute configuration
of the biaryl moiety.

This general lack of ‘matched’/‘mismatched’ distinction,
as far as enantiomeric excesses are concerned, does not
apply to conversions. Catalyst 2i performed better than
3i—as previously reported.11 Amine 2a also catalyzed
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the reaction better than 3a, in biphasic CH2Cl2/water
conditions in particular (e.g., olefin 5, conditions B,
2a: 87% versus 3a: <5%).

If one now compares the selectivity of the homologous
amine and iminium salts—that is 2a with 2i, and 3a
with 3i—one notices that the amines and iminium salts
(i) induce the same sense of stereoselective induction
into the non-racemic epoxides, and (ii) lead to
comparable levels of enantiomeric excesses (with the
‘exception’ of olefin 5).22 A subtle solvent effect is
observed for compounds 2a and 2i, the amine perform-
ing slightly better in conditions A and the iminium in
CH2Cl2/water (conditions B). For derivatives 3a and
3i, the iminium cation leads to slightly better results
in both solvent conditions.

To conclude, amines 1a–3a perform essentially as well as
their iminium salts 1i–3i as catalysts for the enantioselec-
tive epoxidation of some prochiral olefins—in particular
in the acetonitrile/water conditions. As making the
amines requires less synthetic steps than the preparation
of the iminium salts, it is therefore advantageous to use
these ‘simpler’ reagents for synthetic applications.
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